동물해방 대 인간존중 또는 예제로 배우는 자연어 처리 기초
땅끝
2025-04-13 19:24
15
0
-
- 관련링크 : https://www.kdgmall.kr7회 연결
본문
동물해방 대 인간존중

도서명 : 동물해방 대 인간존중
저자/출판사 : 문성학, 한국학술정보
쪽수 : 231쪽
출판일 : 2019-07-05
ISBN : 9788926888742
정가 : 15000
제1장 피터 상어의 이익평등고려원칙 비판
Ⅰ. 이익평등고려원칙에서 이익과 평등의 개념
Ⅱ. 이익평등고려원칙과 상식의 도덕 간의 대립
Ⅲ. 이익평등고려원칙은 과연 인간의 이익을 평등하게 고려하고 있는가?
Ⅳ. 인간의 지위를 낮추지 않고 동물의 지위를 높인다?
Ⅴ. 맺음말
제2장 피터 싱어의 인간 개념과 문제점
Ⅰ. 인간 개념에 대한 싱어의 정의와 문제점
Ⅱ. 자연계에서 인간의 위치에 대한 싱어 입장의 이중성
Ⅲ. 인간의 이성 능력에 대한 싱어의 이중적 태도
Ⅳ. 인간의 도덕적 행위능력에 대한 싱어의 이중적평가
Ⅴ. 맺음말
제3장 피터싱어의 윤리적 채식주의의 유형
Ⅰ. 싱어가 지지하는 채식주의의 유형
Ⅱ. 동물도 과연 고통을 느끼는가?
Ⅲ. 방목의 방식으로 사육한 뒤 최대한 고통 없이 죽인 돌물을 먹어도 되는가?
Ⅳ. 사육해서 잡아먹히는 동물의 고통에 대비해서 새로 태어나는 동물들의 행복의 총량이 더 크다면
육식도 가능한 것이 아닌가?
Ⅴ. 맺음말
제4장 동물 윤리학과 가장자리경우논증
Ⅰ. 동물을 위한 가장자리경우논증
Ⅱ. 가장자리경우논증에 대한 비판
Ⅲ. 가장자리 인간들의 도덕적 권리
Ⅳ. 맺음말
제5장 환경윤리의 관점에서 본 피터 이익평등고려원칙
Ⅰ. 이익평등고려원칙과 종의 문제
Ⅱ. 이익평등고려원칙과 생태계 균형
Ⅲ. 이익평등고려의 원칙과 실천 가능성
Ⅳ. 맺음말
예제로 배우는 자연어 처리 기초

도서명 : 예제로 배우는 자연어 처리 기초
저자/출판사 : 쇼홈 고시 , 드와이트 거닝, 에이콘출판
쪽수 : 432쪽
출판일 : 2020-03-20
ISBN : 9791161753959
정가 : 35000
1장. 자연어 처리 소개
__소개
__NLP의 역사
__텍스트 분석과 NLP
____예제 1: 기본적인 텍스트 분석
__NLP의 다양한 단계
____토큰화
____예제 2: 단순 문장의 토큰화
____PoS 태깅
____예제 3: PoS 태깅
____불용어 제거
____예제 4: 불용어 제거
____텍스트 정규화
____예제 5: 텍스트 정규화
____철자 수정
____예제 6: 단어 및 문장 철자 수정
____어간 추출
____예제 7: 어간 추출
____표제어 추출
____예제 8: 표제어 추출을 사용해 기본 단어 추출
____NER
____예제 9: 개체명 취급
____단어 중의성 해결
____예제 10: 단어 중의성 해결
____문장 경계 인식
____예제 11: 문장 경계 인식
____실습 1: 원시 텍스트 전처리
__NLP 프로젝트 활성화
____데이터 수집
____데이터 전처리
____피처 추출
____모델 개발
____모델 평가
____모델 배포
__요약
2장. 기본적인 피처 추출 방법
__소개
__데이터 타입
____구조 기반 데이터 분류
____내용 기반 데이터의 범주화
__텍스트 데이터 정제
____토큰화
____예제 12: 텍스트 정제와 토큰화
____예제 13: n-그램 추출
____예제 14: 다른 패키지로 텍스트 토큰화 - 케라스와 TextBlob
____토크나이저의 종류
____예제 15: 다양한 토크나이저를 사용한 텍스트 토큰화
____토큰화의 이슈들
____어간 추출
____RegexpStemmer
____예제 16: RegexpStemmer를 사용해 진행형 형태의 단어를 기본 단어로 변환
____포터 형태소 분석기
____예제 17: 포터 형태소 분석기
____표제어 추출
____예제 18: 표제어 추출
____예제 19: 단어의 단수화와 복수화
____언어 번역
____예제 20: 언어 번역
____불용어 제거
____예제 21: 불용어 제거
__텍스트로부터 피처 추출
____원시 텍스트에서 일반적인 피처 추출
____예제 22: 원시 텍스트에서 일반적인 피처 추출
____실습 2: 텍스트에서 일반적인 피처 추출하기
____단어 모음
____예제 23: BoW 생성
____지프의 법칙
____예제 24: 지프의 법칙
____TF-IDF
____예제 25: TF-IDF 표현
____실습 3: 텍스트에서 특수한 피처 추출하기
__피처 엔지니어링
____예제 26: 피처 엔지니어링(텍스트 유사도)
____단어 구름
____예제 27: 단어 구름
____다른 시각화 방법들
____예제 28: 다양한 시각화(종속 구문 분석 트리와 개체명)
____실습 4: 텍스트 시각화
__요약
3장. 텍스트 분류기 개발
__소개
__머신러닝
____비지도 학습
____계층적 군집화
____예제 29: 계층적 군집화
____K-평균 군집화
____예제 30: K-평균 군집화
____지도 학습
____분류
____로지스틱 회귀
____나이브 베이즈 분류기
____K-최근접 이웃
____예제 31: 텍스트 분류(로지스틱 회귀, 나이브베이즈, KNN)
____회귀
____선형 회귀
____예제 32: 텍스트 데이터를 사용한 회귀분석
____트리 기반 방법
____랜덤 포레스트
____GBM과 XGBoost
____예제 33: 트리 기반 방법(의사 결정 트리, 랜덤 포레스트, GBM, XGBoost)
____샘플링
____예제 34: 샘플링(단순 무작위 추출법, 층화 추출법, 다단계 추출법)
__텍스트 분류기 개발
____피처 추출
____피처 엔지니어링
____상호 연관된 피처 제거
____예제 35: 높은 상관관계 피처들 제거(토큰)
____차원 축소
____예제 36: 차원 축소(PCA)
____모델 유형 결정
____모델 성능 평가
____예제 37: RMSE와 MAPE 계산
____실습 5: 엔드 투 엔드 텍스트 분류기 개발
__NLP 프로젝트를 위한 파이프라인 구축
____예제 38: NLP 프로젝트를 위한 파이프라인 구축
__모델 저장 및 불러오기
____예제 39: 모델 저장 및 불러오기
__요약
4장. 웹에서 텍스트 데이터 수집하기
__소개
__웹 페이지를 스크래핑해 데이터 수집하기
____예제 40: HTML 파일에서 태그 기반 정보 추출하기
__웹 페이지에서 내용 불러오기
____예제 41: 온라인 텍스트 데이터 수집
____예제 42: 주피터 노트북의 내용 분석하기(HTML 형식)
____실습 6: 온라인 HTML 페이지에서 정보 추출하기
____실습 7: 정규 표현식을 사용해 데이터 추출 및 분석하기
__준정형 데이터 다루기
____JSON
____예제 43: JSON 파일 다루기
____실습 8: 온라인 JSON 파일 다루기
____XML
____예제 44: 로컬에 있는 XML 파일 다루기
____API를 사용해 실시간 데이터 불러오기
____예제 45: API를 사용한 데이터 수집
____API 생성
____실습 9: 트위터에서 데이터 추출하기
____로컬 파일에서 데이터 추출하기
____예제 46: 로컬 파일에서 데이터 추출하기
____예제 47: 로컬 파일에 다양한 작업 수행
__요약
5장. 토픽 모델링
__소개
__토픽 찾기
____테마 찾기
____탐색적 데이터 분석
____문서 군집화
____차원 축소
____역사 분석
____단어 모음
__토픽 모델링 알고리즘
____잠재 의미 분석
____LSA - 동작 방식
____예제 48: 잠재 의미 분석을 활용한 로이터 뉴스 기사 분석
____잠재 디리클레 할당
____LDA 동작 방식
____예제 49: 항공사 트윗에 있는 토픽
____토픽 핑거프린팅
____예제 50: 토픽 벡터를 사용한 문서 시각화
____실습 10: 제퍼디 질문에 대한 토픽 모델링
__요약
6장. 텍스트 요약과 텍스트 생성
__소개
__자동 텍스트 요약이란?
____자동 텍스트 요약의 이점
__텍스트 요약의 고수준 뷰
____목적
____입력
____출력
____추출적 텍스트 요약
____추상적 텍스트 요약
____시퀀스 투 시퀀스
____인코더-디코더
__TextRank
____예제 51: TextRank 기초
__젠심을 사용한 텍스트 요약
____실습 11: 젠심 텍스트 요약기를 사용해 다운로드한 페이지 요약하기
__단어 빈도를 이용한 텍스트 요약
____예제 52: 단어 빈도수 텍스트 요약
__마르코프 체인을 사용한 텍스트 생성
____마르코프 체인
____예제 53: 마르코프 체인을 사용한 텍스트 생성
__요약
7장. 벡터 표현
__소개
__벡터 정의
__벡터 표현을 사용하는 이유
____인코딩
____문자 수준 인코딩
____예제 54: ASCII 값을 사용한 문자 인코딩
____예제 55: 넘파이 배열을 사용한 문자 수준 인코딩
____위치 기반 문자 수준 인코딩
____예제 56: 위치를 사용한 문자 수준 인코딩
____원핫 인코딩
____원핫 인코딩의 주요 단계
____예제 57: 문자 원핫 인코딩 - 수동적인 방법
____예제 58: 케라스를 활용한 문자 수준 원핫 인코딩
____단어 수준 원핫 인코딩
____예제 59: 단어 수준 원핫 인코딩
____단어 임베딩
____Word2Vec
____예제 60: 단어 벡터 학습
____사전 학습된 단어 벡터 사용
____예제 61: 사전 학습된 단어 벡터 불러오기
____문서 벡터
____문서 벡터의 활용
____예제 62: 영화 대화를 문서 벡터로 변환하기
____실습 12: 문서 벡터를 활용해 유사한 영화 대사 찾기
__요약
8장. 감성 분석
__소개
__왜 감성 분석이 필요한가?
__감성 분석의 성장
____감성의 수익 창출
____감성의 유형
____주요 아이디어와 용어
____감성 분석의 응용 분야
__감성 분석에 사용하는 도구들
____주요 클라우드 제공업체의 NLP 서비스
____온라인 마켓플레이스
____파이썬 NLP 라이브러리
____딥러닝 라이브러리
__TextBlob
____예제 63: TextBlob 라이브러리를 사용한 기본적인 감성 분석
____실습 13: TextBlob 라이브러리를 사용해 트윗 감성 분석하기
__감성 분석 데이터의 이해
____예제 64: 감성 분석 데이터 불러오기
__감성 모델 학습
____예제 65: TF-IDF와 로지스틱 회귀를 사용한 감성 모델 학습
__요약
부록
댓글목록0